Примеры в двоичной системе счисления: Двоичная система счисления

Содержание

Калькулятор 2 системы счисления сложение и вычитание. Сложение двоичных чисел. Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Примечание:
Выполнять действия можно только в одной системе счисления, если вам даны разные системы счисления, сначала переведите все числа в одну систему счисления
Если вы работаете с системой счисления, основание которой больше 10 и у вас в примере встретилась буква, мысленно замените её цифрой в десятичной системе, проведите необходимые операции и переведите результат обратно в исходную систему счисления

Сложение:
Все помнят, как в начальной школе нас учили складывать столбиком, разряд с разрядом. Если при сложении в разряде получалось число больше 9, мы вычитали из него 10, полученный результат записывали в ответ, а 1 прибавляли к следующему разряду. Из этого можно сформулировать правило:

  1. Складывать удобнее «столбиком»
  2. Складывая поразрядно, если цифра в разряде > больше самой большой цифры алфавита данной Системы счисления, вычитаем из этого числа основание системы счисления.
  3. Полученный результат записываем в нужный разряд
  4. Прибавляем единицу к следующему разряду
Пример:

Сложить 1001001110 и 100111101 в двоичной системе счисления

1001001110

100111101

1110001011

Ответ: 1110001011

Сложить F3B и 5A в шестнадцатеричной системе счисления

Ответ: FE0


Вычитание:Все помнят, как в начальной школе нас учили вычитать столбиком, разряд из разряда. Если при вычитании в разряде получалось число меньше 0, мы то мы «занимали» единицу из старшего разряда и прибавляли к нужной цифре 10, из нового числа вычитали нужное. Из этого можно сформулировать правило:

  1. Вычитать удобнее «столбиком»
  2. Вычитая поразрядно, если цифра в разряде
  3. Производим вычитание
Пример:

Вычесть из 1001001110 число 100111101 в двоичной системе счисления

1001001110

100111101

100010001

Ответ: 100010001

Вычесть из F3B число 5A в шестнадцатеричной системе счисления

Ответ: D96

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.
Умножение:

Умножение в других системах счисления происходит точно так же, как и мы привыкли умножать.

  1. Умножать удобнее «столбиком»
  2. Умножение в любой системе счисления происходит по тем же правилам, что и в десятичной. Но мы можем использовать только алфавит, данный системы счисления
Пример:

Умножить 10111 на число 1101 в двоичной системе счисления

10111

1101

10111

10111

10111

100101011

Ответ: 100101011

Умножить F3B на число A в шестнадцатеричной системе счисления

Ответ: 984E

Ответ: 984E

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.

Деление в других системах счисления происходит точно так же, как и мы привыкли делить.

  1. Делить удобнее «столбиком»
  2. Деление в любой системе счисления происходит по тем же правилам, что и в десятичной. Но мы можем использовать только алфавит, данный системы счисления

Пример:

Разделить 1011011 на число 1101 в двоичной системе счисления

Разделить F 3 B на число 8 в шестнадцатеричной системе счисления

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.

НЕПОЗИЦИОННЫЕ

Непозиционные системы счисления

Непозиционные системы счисления появились исторически первыми. В этих системах значение каждого цифрового символа постоянно и не зависит от его положения. Простейшим случаем непозиционной системы является единичная, для которой для обозначения чисел используется единственный символ, как правило это черта, иногда точка, которых всегда ставится количество, соответствующее обозначаемому числу:

  • 1 — |
  • 2 — ||
  • 3 — |||, и т. д.

Таким образом, этот единственный символ имеет значение единицы , из которой последовательным сложением получается необходимое число:

||||| = 1+1+1+1+1 = 5.

Модификацией единичной системы является система с основанием, в которой есть символы не только для обозначения единицы, но и для степеней основания. Например, если за основание взято число 5, то будут дополнительные символы для обозначения 5, 25, 125 и так далее.

Примером такой системы с основанием 10 является древнеегипетская, возникшая во второй половине третьего тысячеления до новой эры. В этой системе имелись следующие иероглифы:

  • шест — единицы,
  • дуга — десятки,
  • пальмовый лист — сотни,
  • цветок лотоса — тысячи.

Числа получались простым сложением, порядок следования мог быть любым. Так, для обозначения, например, числа 3815, рисовали три цветка лотоса, восемь пальмовых листов, одну дугу и пять шестов. Более сложные системы с дополнительными знаками — старая греческая, римская. Римская также использует элемент позиционной системы — большая цифра, стоящая перед меньшей, прибавляется, меньшая перед большей — вычитается: IV = 4, но VI = 6, этот метод, правда, применяется исключительно для обозначения чисел 4, 9, 40, 90, 400, 900, 4000, и производных их сложением.

Новогреческая и древнерусская системы использовали в качестве цифр 27 букв алфавита, где ими обозначалось каждое число от 1 до 9, а также десятки и сотни. Такой подход обеспечил возможность записывать числа от 1 до 999 без повторений цифр.

В старорусской системе для обозначения больших чисел использовались специальные обрамления вокруг цифр.

В качестве словесной системы номерации до сих пор практически везде используется непозиционная. Словесные системы нумерации сильно привязаны в языку, и общие их элементы в основном относятся к общим принципам и названиям больших чисел (триллион и выше). Общие принципы, положенные в основу современных словесных нумераций вредполагают формирование обозначения посредством сложения и умножения значений уникальных названий.

Как мы складываем в десятичной системе счисления?

Давайте вспомним о том, как мы складываем числа уже привычным нам способом, в десятичной .

Самое главное стоит понять разряды. Вспомните алфавит каждой СС и тогда вам станет легче.

Сложение в двоичной системе ничем не отличается от сложения в десятичной системе. Главное помнить, алфавит содержит всего две цифры: 0 и 1. Поэтому когда мы складываем 1 + 1, то получаем 0, и увеличиваем число еще на 1 разряд. Посмотрите на пример выше:

  1. Начинаем складывать как и привыкли справа налево. 0 + 0 = 0, значит записываем 0. Переходим к следующему разряду.
  2. Складываем 1 + 1 и получаем 2, но 2 нет в двоичной системе счисления, а значит мы записываем 0, а 1 добавляем к следующему разряду.
  3. У нас получается в этом разряде три единицы складываем 1 + 1 + 1 = 3, этой цифры также быть не может. Значит 3 – 2 = 1. И 1 добавляем к следующему разряду.
  4. У нас вновь получается 1 + 1 = 2. Мы уже знаем, что 2 быть не может, значит записываем 0, а 1 добавляем к следующему разряду.
  5. Складывать больше нечего, значит в ответе получаем: 10100.

Один пример мы разобрали, второй решите самостоятельно:

Так же как и в любых других системах счисления необходимо помнить Алфавит. Давайте попробуем сложить выражение.

  1. Все как обычно, начинаем складывать справа налево. 4 + 3 = 7.
  2. 5 + 4 = 9. Девяти быть не может, значит из 9 вычитаем 8, получаем 1. И еще 1 добавляем к следующему разряду.
  3. 3 + 7 + 1 = 11. Из 11 вычитаем 8, получаем 3. И единицу добавляем к следующему разряду.
  4. 6 + 1 = 7.
  5. Складывать далее нечего. Ответ: 7317.

А теперь проделайте сложение самостоятельно:

  1. Выполняем уже знакомые нам действия и не забываем про алфавит. 2 + 1 = 3.
  2. 5 + 9 = 14. Вспоминаем Алфавит: 14 = Е.
  3. С = 12. 12 + 8 = 20. Двадцати нет в шестнадцатеричной системе счисления. Значит из 20 вычитаем 16 и получаем 4. И единицу добавляем к следующему разряду.
  4. 1 + 1 = 2.
  5. Больше складывать нечего. Ответ: 24Е3.

Вычетание в системах счисления

Вспомним, как мы это делаем в десятичной системе счисления.

  1. Начинаем слева направо, от меньшего разряда к большему. 2 – 1 = 1.
  2. 1 – 0 = 1.
  3. 3 – 9 = ? Тройка меньше девяти, поэтому позаимствуем единицу из старшего разряда. 13 – 9 = 4.
  4. Из последнего разряда мы взяли единицу для предыдущего действия, поэтому 4 – 1 = 3.
  5. Ответ: 3411.

  1. Начинаем как обычно. 1 – 1 = 0.
  2. 1 – 0 = 1.
  3. От 0 отнять единицу нельзя. Поэтому заберем один разряд у старшего. 2 – 1 = 1.
  4. Ответ: 110.

А теперь решите самостоятельно:

  1. Ничего нового, главное помнить алфавит. 4 – 3 = 1.
  2. 5 – 0 = 5.
  3. От 3 отнять 7 мы сразу не можем, для этого нам необходимо заимствовать единицу у более старшего разряда. 11 – 7 = 4.
  4. Помним, что заимствовали единицу ранее, 6 – 1 = 5.
  5. Ответ: 5451.

Возьмем предыдущий пример, и посмотрим каков будет результат в шестнадцатеричной системе. Такой же или другой?

  1. 4 – 3 = 1.
  2. 5 – 0 = 5.
  3. От 3 отнять 7 мы сразу не можем, для этого нам необходимо заимствовать единицу у более старшего разряда. 19 – 7 = 12. В шестнадцатеричной системе 12 = С.
  4. Помним, что заимствовали единицу ранее, 6 – 1 = 5
  5. Ответ: 5С51

Пример для самостоятельного решения:

Умножение в системах счисления

Давайте запомним раз и навсегда, что умножение в любой системе счисления на единицу, всегда даст тоже самое число.

  1. Каждый разряд умножаем на единицу, как обычно справа налево, и получаем число 6748;
  2. 6748 умножаем на 8 и получаем число 53984;
  3. Проделываем операцию умножения 6748 на 3. Получаем число 20244;
  4. Складываем все 3 числа, по правилам. Получаем 2570988;
  5. Ответ: 2570988.

В двоичной системе умножать очень легко. Мы всегда умножаем либо на 0, либо на единицу. Главное, это внимательно складывать. Давайте попробуем.

  1. 1101 умножаем на единицу, как обычно справа налево, и получаем число 1101;
  2. Проделываем эту операцию еще 2 раза;
  3. Складываем все 3 числа внимательно, помним про алфавит, не забывая про лесенку;
  4. Ответ: 1011011.

Пример для самостоятельного решения:

  1. 5 х 4 = 20. А 20 = 2 х 8 + 4. Остаток от деления записываем в число – это будет 4, а 2 держим в уме. Проделываем эту процедуру справа налево и получаем число 40234;
  2. При умножении на 0, получаем четыре 0;
  3. При умножении на 7, у нас получается число 55164;
  4. Теперь складываем числа и получаем – 5556634;
  5. Ответ: 5556634.

Пример для самостоятельного решения:

Все как обычно, главное вспомните алфавит. Буквенные цифры, для удобства переводите в привычную для себя систему счисления, как умножите, переводите обратно в буквенное значение.

Давайте для наглядности разберем умножение на 5 числа 20А4.

  1. 5 х 4 = 20. А 20 = 16 + 4. Остаток от деления записываем в число – это будет 4, а 1 держим в уме.
  2. А х 5 + 1 = 10 х 5 + 1 = 51. 51 = 16 х 3 + 3. Остаток от деления записываем в число – это будет 3, а 3 держим в уме.
  3. При умножении на 0, получаем 0 + 3 = 3;
  4. 2 х 5 = 10 = А; В итоге у нас получается А334; Проделываем эту процедуру с двумя другими числами;
  5. Помним правило умножения на 1;
  6. При умножении на В, у нас получается число 1670С;
  7. Теперь складываем числа и получаем – 169В974;
  8. Ответ: 169В974.

Пример для самостоятельного решения.

Арифметические операции в двоичной системе счисления

Правила выполнения арифметических действий над двоичными числами задаются таблицами сложения, вычитания и умножения.

Правило выполнения операции сложения одинаково для всех систем счисления: если сумма складываемых цифр больше или равна основанию системы счисления, то единица переносится в следующий слева разряд. При вычитании, если необходимо, делают заем.

Аналогично выполняются арифметические действия в восьмеричной, шестнадцатеричной и других системах счисления. При этом необходимо учитывать, что величина переноса в следующий разряд при сложении и заем из старшего разряда при вычитании определяется величиной основания системы счисления.

Арифметические операции в восьмеричной системе счисления

Для представления чисел в восьмеричной системе счисления используются восемь цифр(0, 1, 2, 3, 4, 5, 6, 7), так как основа восьмеричной системы счисления равна8. Все операции производятся посредством этих восьми цифр. Операции сложения и умножения в восьмеричной системе счисления производятся с помощью следующих таблиц:

Таблицы сложения и умножения в восьмеричной системе счисления

Пример 5 .Вычесть восьмеричные числа 5153- 1671и2426,63- 1706,71

Пример 6 .Умножить восьмеричные числа51 16и16,6 3,2

Арифметические операции в шестнадцатеричной системе счисления

Для представления чисел в шестнадцатеричной системе счисления используются шестнадцать цифр:0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. В шестнадцатеричной системе числошестнадцатьпишется как10. Выполнение арифметических операций в шестнадцатеричной системе производится как и в десятиричной системе, но при выполнении арифметических операций над большими числами необходимо использовать таблицы сложения и умножения чисел в шестнадцатеричной системе счисления.

Таблица сложения в шестнадцатеричной системе счисления

Таблица умножения в шестнадцатеричной системе счисления

Пример 7 .Сложить шестнадцатеричные числа

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.

Результат уже получен!

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +…+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +…+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k — дробное число в позиции (-k), s — система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления — из множества цифр {0,1}, в шестнадцатеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B — на 11, C — на 12, F — на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Выполнение арифметических операций в двоичной системе счисления

В двоичной системе счисления используются цифры: 0, 1.

Рассмотрим основные арифметические операции для этих цифр: сложение, вычитание, умножение, деление.

Сложение:

02+02=02

02+12=12

12+02=12

12+12=102

Пример задачи на сложение:

Вычитание:

02-02=02

02-12=(заем из более старшего разряда)12

12-02=12

12-12=02

Пример задачи на вычитание:

Рассмотрим ход выполнения этото примера:


Умножение:

02*02=02

02*12=02

12*02=02

12*12=12

Умножение чисел делается также как и в десятичной системе.

Пример задачи на умножение:


Деление:

02/12=02

12/12=12

Деление чисел делается также как и в десятичной системе.

Пример задачи на деление:

1010|10  
10     101 
   10
   10
     0

Калькулятор сложения, вычитания, умножения и деления двоичных чисел

Идет расчет …

Что такое двоичная система счисления

Двоичная система счисления, является позиционной системой счисления, то есть имеется зависимость от позиции цифры в записи числа. Для записи числа в двоичной системе счисления используется две цифры 0 и 1. Для определения в какой системе счисления записано число, внизу, справа от числа ставят цифру, которая называется основанием системы счисления. Например, 10012 или 10001012

Если вам необходимо перевести число любой системы счисления в другую систему счисления, воспользуйтесь калькулятором систем счисления с подробным решением онлайн.

Вам могут также быть полезны следующие сервисы
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Калькулятор сложения, вычитания, умножения и деления двоичных чисел
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькулятор приведения дробей к общему знаменателю
Калькуляторы (тригонометрия)
Калькулятор синуса угла
Калькулятор косинуса угла
Калькулятор тангенса угла
Калькулятор котангенса угла
Калькулятор секанса угла
Калькулятор косеканса угла
Калькулятор арксинуса угла
Калькулятор арккосинуса угла
Калькулятор арктангенса угла
Калькулятор арккотангенса угла
Калькулятор арксеканса угла
Калькулятор арккосеканса угла
Калькуляторы (Теория чисел)
Калькулятор выражений
Калькулятор со скобками
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Калькулятор НОД и НОК для любого количества чисел
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор экспоненциальной записи чисел
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Калькулятор больших чисел
Калькулятор округления числа
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Конвертеры величин
Конвертер единиц длины
Конвертер единиц скорости
Конвертер единиц ускорения
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Арифметические действия над двоичными числами

3.3 Арифметические действия над двоичными числами

Арифметика двоичной системы счисления основана на использовании таблиц сложения, вычитания и умножения. Эти таблицы чрезвычайно просты:

Таблица

сложения

0

+

0

=

0

0

+

1

=

1

1

+

0

=

1

1

+

1

=

10

Таблица

умножения

0

*

0

=

0

0

*

1

=

0

1

*

0

=

0

1

*

1

=

1

Таблица

вычитания

0

0

=

0

1

0

=

1

1

1

=

0

10

1

=

1


3.3.1 Двоичное сложение

Двоичное сложение выполняется по тем же правилам, что и десятичное, с той лишь разницей, что перенос в следующий разряд производиться после того, как сумма достигнет не десяти, а двух.

Пример 3.5 Сложение двоичных чисел и

+

101101

111110

010011

– поразрядная сумма без учета переносов

+

1011000

– переносы

0010011

1001011

– поразрядная сумма без учета повторных переносов

+

0100000

– повторные переносы

1001011

1101011

– окончательный результат

Легко произвести проверку:

,

,

,

.

Пример 3.6 Сложение двоичных чисел и

+

110,

1011

10111,

10101

10001,

00011

– поразрядная сумма без учета переносов

+

11 1,

1

– переносы

10001,

00011

11100,

01011

– поразрядная сумма без учета повторных переносов

+

1 ,

– повторные переносы

11100,

01011

11110,

01011

– окончательный результат

Сложение нескольких чисел вызывает некоторые трудности, так как в результате поразрядного сложения могут получится переносы, превышающие единицу.

3.3.2 Двоичное вычитание

Вычитание в двоичной системе выполняется аналогично вычитанию в десятичной системе счисления. При необходимости, когда в некотором разряде приходится вычитать единицу из нуля, занимается единица из следующего старшего разряда. Если в следующем разряде нуль, то заем делается в ближайшем старшем разряде, в котором стоит единица. При этом следует понимать, что занимаемая единица равна двум единицам данного разряда, т. е. вычитание выполняется по следующему правилу:

Пример 3.7 Вычитание двоичных чисел и

11010,

1011

1101,

01111

1101,

00111

Конечно, математически вычитание выполнить несложно. Однако, если поступать таким образом, то к примеру в ЭВМ придется для выполнения сложения и вычитания иметь два блока: сумматор и вычитатель. Поэтому поступают следующим образом: вычитание можно представить как сложение положительного и отрицательного чисел, необходимо только подходящее представление для отрицательного числа.

Рассмотрим четырехразрядный десятичный счетчик, какие в автомобиле отсчитывают пройденный путь. Пусть он показывает число 2, если вращать его в обратном направлении, то сначала появится 1, затем 0, после 0 появится число 9999. Сложим, к примеру, 6 с этим числом:

Если пренебречь единицей переноса и считать 9999 аналогом –1, то получим верный результат: .

Число 9999 называется десятичным дополнением числа 1. Таким образом, в десятичной системе счисления отрицательные числа могут быть представлены в форме десятичного дополнения, а знак минус можно опустить.

Двоичное дополнение числа определяется как то число, которое будучи прибавлено к первоначальному числу, даст только единицу переноса в старшем разряде.

Пример 3.8 Двоичное дополнение числа

+

010101111

– число

101010001

– двоичное дополнение

1000000000

– сумма

 – единица переноса

Для получения двоичного дополнения необходимо:

  • получить обратный код, который образуется инвертированием каждого бита:

    010101111

    – число

    101010000

    – обратный код

  • прибавить к обратному коду единицу, образовав таким образом дополнительный код:

+

101010000

– обратный код

1

101010001

– дополнительный код

Пример 3.9 Вычитание в дополнительном коде

– обратный код,

– дополнительный код.

1001012=510 (верно).

3.3.3 Двоичное умножение

Умножение двух двоичных чисел выполняется так же, как и умножение десятичных. Сначала получаются частичные произведения и затем их суммируют с учетом веса соответствующего разряда множителя.

Отличительной особенностью умножения в двоичной системе счисления является его простота, обусловленная простотой таблицы умножения. В соответствии с ней, каждое частичное произведение или равно нулю, если в соответствующем разряде множителя стоит нуль, или равно множимому, сдвинутому на соответствующее число разрядов, если в соответствующем разряде множителя стоит единица. Таким образом, операция умножения в двоичной системе сводится к операциям сдвига и сложения.

Умножение производится, начиная с младшего или старшего разряда множителя, что и определяет направление сдвига. Если сомножители имеют дробные части, то положение запятой в произведении определяется по тем же правилам, что и для десятичных чисел.

Пример 3.10 Умножение двоичных чисел и

3.3.4 Двоичное деление

Деление чисел в двоичной системе производится аналогично делению десятичных чисел. Рассмотрим деление двух целых чисел, так как делимое и делитель всегда могут быть приведены к такому виду путем перениесения запятой в делимом и делителе на одиноаковое число разрядов и дописывания необходимых нулей. Деление начинается с того, что от делимого слева отделяется минимальная группа разрядов, которая, рассматриваемая как число, превышает или равна делителю. Дальнейшие действия выполняются по обычным правилам, причем последняя целая цифра частного получается тогда, когда все цифры делимого исчерпаны.

Пример 3.11 Деление двоичных чисел

1) 18:2

2) 14:4

10010

10

1110

100

10

1001=(9)10

100

11,1=(3,5)10

00

110

00

100

001

100

000

100

10

0

10

00

Таким образом, выполнение арифметических операций в двоичной системе счисления достаточно просто. Особенно просто выполнять операции сложения, вычитания и умножения. Благодоря этому, применение двоичной системы в вычислительных машинах позволяет упростить схемы устройств, в которых осуществляются операции над числами.

4. Представление чисел в ЭВМ, кодирование

4.1 Представление чисел с фиксированной и плавающей запятой

При представлении числа в двоичном коде с цифрами 0,1 в каждом разряде записываются цифры 0 или 1. Так как в ЭВМ «запись» числа осуществляется с помощью технических устройств, то для представления его в такой форме необходимо располагать устройствами с двумя надежно различными состояниями, которым могут быть сопоставлены значения 0 или 1. Комбинация таких устройств, число которых соответствует количеству разрядов записываемого числа, может быть использована для представления чисел в ЭВМ.

В качестве таких устройств, могут быть использованы триггеры. Набор триггеров, предназначенных для представления чисел в ЭВМ, а также для выполнения над ними некоторых логических преобразований, называется регистром. Разумеется, число разрядов, отведенное для записи числа, соответствующее числу триггеров, в ЭВМ всегда конечно. Выбор количества разрядов для представления чисел в ЭВМ является одним из самых ответственных этапов конструирования вычислительной машины и обуславливается целым рядом требований, среди которых одно из важнейших – необходимая точность вычислений.

В ЭВМ применяются две основные формы представления чисел: полулогарифмическая – с плавающей запятой и естественная – с фиксированным положением запятой.

При представлении чисел с фиксированной запятой положение запятой закрепляется в определенном месте относительно разрядов числа и сохраняется неизменным для всех чисел, изображаемых в данной разрядной сетке. Обычно запятая фиксируется перед старшим разрядом или после младшего. В первом случае в разрядной сетке могут быть представлены только числа, которые по модулю меньше 1, во втором – только целые числа.

Использование представления чисел с фиксированной запятой позволяет упростить схемы машины, повысить ее быстродействие, но представляет определенные трудности при программировании. В настоящее время представление чисел с фиксированной запятой используется как основное только в микроконтроллерах.

В универсальных ЭВМ основным является представление чисел с плавающей запятой. Широкий диапазон представления чисел с плавающей запятой удобен для научных и инженерных расчетов. Для повышения точности вычислений во многих ЭВМ предусмотрена возможность использования формата двойной длины, однако при этом происходит увеличение затрат памяти на хранение данных и замедляются вычисления.

Рассмотрим подробнее эти два формата.

4.1.1 Числа с фиксированной запятой

Формат для чисел с запятой, фиксированной перед старшим разрядом. В этом формате могут быть с точностью до представлены числа (правильные дроби) в диапазоне

.

Первые ЭВМ были машинами с фиксированной запятой, причем запятая фиксировалась перед старшим разрядом числа. В настоящее время, как правило, форму с фиксированной запятой применяют для представления целых чисел (запятая фиксирована после младшего разряда).

Используют два варианта представления целых чисел: со знаком и без знака. В последнем случае все разряды разрядной сетки служат для представления модуля числа. В ЕС ЭВМ применяются оба указанных варианта представления целых чисел, причем каждый из вариантов реализуется как в формате 32-разрядного машинного слова этих машин, так и в формате 16-разрядного полуслова.

При выполнении арифметических действий над правильными дробями могут получаться двоичные числа, по абсолютной величине больше или равные единице, что называется переполнением разрядной сетки. Для исключения возможности переполнения приходится масштабировать величины, участвующие в вычислениях.

Достоинство представления чисел в форме с фиксированной запятой состоит в простоте выполнения арифметических операций.

Недостатки – в необходимости выбора масштабных коэффициентов и в низкой точности представления с малыми значениями модуля (нули в старших разрядах модуля приводит к уменьшению количества разрядов, занимаемых значащей частью модуля числа).

4.1.2 Числа с плавающей запятой

При использовании плавающей запятой число состоит из двух частей: мантиссы m, содержащей значащие цифры числа, и порядка р, показывающего степень, в которую надо возвести основание числа q, чтобы полученное при этом число, умноженное на мантиссу, давало истинное значение представляемого числа:

(4.1)

Мантисса и порядок представляются в двоичном коде. Обычно число дается в нормализованном виде, когда его мантисса является правильной дробью, причем первая значащая цифра (единица) следует непосредственно после запятой: например, где m=0,1010; р=10; q=2

Порядок указывает действительное положение запятой в числе. Код в приведенном формате представляет значение числа в полулогарифмической форме: .

Точность представления значений зависит от количества значащих цифр мантиссы. Для повышения точности числа с плавающей запятой представляются в нормализованной форме, при которой значение модуля мантиссы лежит в пределах . Признаком нормализованного числа служит наличие единицы в старшем разряде модуля мантиссы. В нормализованной форме могут быть представлены все числа из некоторого диапазона за исключением нуля.

Нормализованные двоичные числа с плавающей запятой представляют значения модуля в диапазоне:

,

где – максимальное значение модуля порядка.

Так, при р=7 –1==63 и диапазон представления модулей нормализованных чисел:

,

Таким образом, диапазон чисел:

Для расширения диапазона представляемых чисел при фиксированной длине разрядной сетки (m) в качестве основания системы счисления выбирается . При этом число, представляемое в разрядной сетке, приобретает значения . Нормализованная мантисса 16-ричного числа с плавающей запятой имеет значения, лежащее в диапазоне . Признаком нормализации такого числа является наличие хотя бы одной единицы в четырех старших разрядах модуля мантиссы. Диапазон представления чисел в этом случае существенно расширяется, находясь при том же количестве разрядов в пределах от до .

    1. Прямой, обратный и дополнительный коды.

При рассмотрении элементарных арифметических операций над двоичными числами мы уже коснулись темы отрицательных двоичных чисел. Теперь рассмотрим ее подробнее.

Для кодирования знака двоичного числа используется старший («знаковый«) разряд (ноль соответствует плюсу, единица – минусу).

Такая форма представления числа называется прямым кодом.

В ЭВМ прямой код применяется только для представления положительных двоичных чисел. Для представления отрицательных чисел применяется либо дополнительный, либо обратный код, так как над отрицательными числами в прямом коде неудобно выполнять арифметические операции.

Правила для образования дополнительного и обратного кода состоят в следующем:

  • для образования дополнительного кода отрицательного числа необходимо в знаковом разряде поставить единицу, а все цифровые разряды инвертировать (заменить 1 на 0, а 0 – на 1), после чего прибавить 1 к младшему разряду;

  • для образования обратного кода отрицательного числа необходимо в знаковом разряде поставить единицу, а все цифровые разряды инвертировать;

  • при данных преобразованиях нужно учитывать размер разрядной сетки.

Прямой код можно получить из дополнительного и обратного по тем же правилам, которые служат для нахождения дополнительного и обратного кодов.

В таблице 4.1 приведены десятичные числа и их двоичные представления в трех различных формах. Интересно в ней вот что. Если начать счет с числа 1000 (–8) и двигаться вниз по столбцам, то в дополнительном коде каждое последующее число получается прибавлением единицы к предыдущему без учета переноса за пределы четвертого разряда. Так просто эту операцию в прямом и обратном кодах не осуществить. Эта особенность дополнительного кода и явилось причиной предпочтительного применения его в современных микро и миниЭВМ.

Итак, числа, представленные в дополнительном коде, складываются по правилам двоичного сложения, но без учета каких либо переносов за пределы старшего разряда. Рассмотрим это на примерах 4.1.

Таблица 4.1 Прямой, обратный и дополнительный коды.

Десятичное

число

Прямой

код

Обратный

код

Дополнительный

Код

-8

1000

-7

1111

1000

1001

-6

1110

1001

1010

-5

1101

1010

1011

-4

1100

1011

1110

-3

1011

1100

1101

-2

1010

1101

1110

-1

1001

1110

1111

0

1000

0000

1111

0000

0000

1

0001

0001

0001

2

0010

0010

0010

3

0011

0011

0011

4

0100

0100

0100

5

0101

0101

0101

6

0110

0110

0110

7

0111

0111

0111

Пример 4.1 Двоичное сложение в дополнительном коде

1)

+

+2

+

0010

2)

+

-2

+

1110

3)

+

+5

+

0101

+5

0101

-6

1010

-4

1100

+7

0111

-8

1000

+1

0001

Еще одним достоинством дополнительного кода является то, что нуль, в отличие от прямого и обратного кодов, представляется одним кодом. Наличие 0 в знаковом бите при представлении нуля определяет его как величину положительную, что согласуется с математической теорией чисел и соглашениями, принятыми во всех языках программирования.

Из приведенных примеров следует, что положительные числа в прямом, обратном и дополнительном кодах совпадают. В прямом и обратном коде нуль имеет два представления – «положительный» и «отрицательный» нуль.

Отметим, что при представлении с плавающей запятой отдельно кодируется мантисса и порядок числа. При этом возможно представление мантисс и порядков чисел в одном и том же или разных кодах. Например, порядок числа может быть представлен в прямом, а мантисса – в дополнительном кодах и т. п.

Таким образом, используя обратный и дополнительный коды, операцию алгебраического сложения можно свести к арифметическому сложению кодов чисел, которое распространяется и на разряды знаков, которые рассматриваются как разряды целой части числа.

При сложении чисел, меньших единицы, в машине быть получены числа, по абсолютной величине большие единицы. Для обнаружения переполнения разрядной сетки в ЭВМ применяются модифицированные прямой, обратный и дополнительный коды. В этих кодах знак кодируется двумя разрядами, причем знаку «плюс» соответствует комбинация 00, а знаку «минус» — комбинация 11.

Правила сложения для модифицированных кодов те же, что и для обычных. Единица переноса из старшего знакового разряда в модифицированном дополнительном коде отбрасывается, а в модифицированном обратном коде передается в младший цифровой разряд.

Признаком переполнения служит появление в знаковом разряде суммы комбинации 01 при сложении положительных чисел (положительное переполнение) или 10 при сложении отрицательных чисел (отрицательное переполнение). Старший знаковый разряд в этих случаях содержит истинное значение знака суммы, а младший является старшей значащей цифрой числа. Для коррекции переполнения число нужно сдвинуть в разрядной сетке на один разряд вправо, а в освободившийся старший знаковый разряд поместить цифру, равную новому значению младшего знакового разряда. После корректировки переполнения мантиссы результата необходимо увеличить на единицу порядок результата.

1010 1111 Решить в двоичной системе – Тарифы на сотовую связь